MS的主要生化功能是催化Hcy再甲基化为蛋氨酸,是Hcy代谢途径的关键酶。MS基因定位于染色体1q43,已知的人类MS基因突变有十余种,其中第2756位碱基A→G(A2756G,相当于密码子919D→G)在西方人群中较为常见,并可能导致血清Hcy水平的改变。本研究正常对照人群中杂合突变基因型(+/-)构成比为10.7%,未检出纯合突变(+/+)基因型;(+)等位基因的频率为4.6%。据报道白种人中A2756G位点杂合子检出率为30%,纯合子为4%左右【10】;日本人(+)等位基因频率为17%【11】;中国正常人群杂合子为17%,纯合子1%,(+)等位基因频率为9.5%【6】。由于遗传变异存在种族差异和地区差异,该结果提示本研究人群A2756G位点变异频率明显低于白种人和日本人,甚至低于其它研究报道的中国人群频率。考虑到遗传变异差异性的客观存在以及样本的代表性,有关中国人群MS基因A2756G位点多态性问题还有待进一步研究。
本研究进一步分析了MS基因A2756G位点变异与CHD的关系,结果显示CHD患者与对照组的基因型构成及等位基因频率无明显差异(P>0.05),杂合突变子(+/-)的OR值为0.84(95%可信区间:0.35~2.01)。分性别分析及不同类型CHD患者与对照组基因型构成差异亦无显著性(P>0.05),OR值介于0~1.15之间。由于亲代基因变异一方面可能通过将突变基因遗传给子代造成子代表型改变,另一方面也可能引起宫内高危环境从而影响子代胎儿期的发育。因此了解亲代基因型与子代表型之间的关联,对于出生缺陷的早期筛查和防治具有重要的意义。本研究分析了先心病患者亲代MS基因变异情况,结果显示病例组与对照组母亲的基因型分布及等位基因频率无明显差异,而病例组父亲(+)等位基因频率(5.0%)低于对照组(9.1%,P=0.060),其子代罹患CHD的OR值为0.53(0.25~1.09)。该结果提示亲代(尤其父亲)携带突变等位基因(+)可能使子代发生CHD的危险性降低。
有关MS基因多态性与CHD发生的关系目前尚未见报道,已有研究多集中于MS基因变异与神经管畸形的关联【12】,但研究结果并不一致,尚不能完全证明MS基因突变是否与神经管畸形有关【13】。前已述及,MS是Hcy代谢途径中的关键酶,而MS基因2756A→G变异可导致919位密码子D→G的缺失突变,使编码的天冬氨酸置换为甘氨酸。由于该密码子编码的氨基酸位于酶活性区域,因此推测该位点突变可能通过改变蛋白质的二级结构,使MS活性上升或减弱,从而影响体内Hcy水平,以及进一步干扰胚胎期心血管和神经等多个器官、系统的发育【10】。有研究表明Hcy水平在(-/-)、(+/-)及(+/+)基因型间呈递减趋势【10,5】,也有研究表明A2756G位点变异与Hcy水平无明显相关或变异导致Hcy升高【8,9】。本研究结果显示亲代携带突变等位基因(+)可降低子代CHD危险性,这提示MS基因变异可能使酶活性增加,进一步导致Hcy水平下降,以及与之相关的出生缺陷危险性降低。因此本研究下一步将进行Hcy水平的测定,以验证A2756G位点突变与Hcy的关系,为进一步明确MS基因变异与CHD的关联架设桥梁。
以父母为对照的病例对照研究本质上是一种配对研究,这种方法的实质是以患儿的两个等位基因作为“病例”,以父母未传给胎儿的两个等位基因作为“对照”,最大的优点是不必为病例寻找具有相同遗传背景的对照而可以克服遗传因素的种族差异的混杂作用【7】。本研究结果显示突变等位基因(+)在CHD核心家庭中存在遗传失衡现象,即父母传给胎儿等位基因(-)的比例大于(+),因此等位基因(-)使胎儿罹患CHD的可能性增高,而突变等位基因(+)则使胎儿发生CHD的危险性降低,其OR值为0.26(95%可信区间:0.11~0.60)。这与前述结果一致。因此本研究可初步认为亲代MS基因A2756G位点变异与子代CHD的发生相关,其突变等位基因(+)可能降低子代CHD的危险性。
参考文献:
1. Li Y., Li S., Chen G.H., Hu B.H., Meng ZH.H., Chen Xing, Zhao R.B., Zhang Ch.H., Liu H., Zhao Zh.R., Tang J., and Li ZH. (2002). The relationship between HCY-2 gene and congenital heart teratogenesis in early chick embryo. National medical journal of China. 80(2), 131-134.
2. Sheth J.J., and Sheth F.J. (2003). Gene polymorphism and folate metabolism: a maternal risk factor for Down syndrome. Indian Pediatr. 40(2), 115-123.
3. Li Y., Li ZH., Chen X., Qi P.W., and Li S. (1999). Effect of homocysteine on cardiovascular development in early chick embryo. Chinene Journal of Preventive Medicine. 33(3), 137-139.
4. Junker R., Kotthoff S., Vielhaber H., Halimeh S., Kosch A., Koch H.G., Kassenbohmer R., Heineking B., and Nowak-Gottl U. (2001). Infant methylenetetra-hydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovascular Research. 51, 251–254.
5. Wang X.L., Duarte N., Cai H., Adachi T., Sim A.S., Cranney G., and Wilcken D.E. (1999). Relationship between total plasma homocysteine, polymorphisms of homocysteine metabolism related enzymes, risk factors and coronary artery disease in the Australian hospital-based population. Atherosclerosis. 146, 133–140.
6. Zhang G.S., and Dai CH.W. (2001). Gene polymorphisms of homocysteine metabolism related enzymes in Chinese patients with occlusive coronary artery or cerebral vascular diseases. Thrombosis Research. 104(3), 189-195.
7. Zhu H.P., Li ZH., Dao J.J., Zhao X.R., and Zhao R.B. (2000). Effect of parental MTHFR genotypes on offspring NTD risk. Hereditas. 22(5), 285-287.
8. Feix A., Fritsche-Polanz R., Kletzmayr J., Vychytil A., Horl W.H., Sunder- Plassmann G., and Fodinger M. (2001). Increased prevalence of combined MTR and MTHFR genotypes among individuals with severely elevated total homocysteine plasma levels. Am J Kidney Dis. 38, 956-964.
9. Jacques P.F., Bostom A.G., Selhub J., Rich S., Curtis Ellison R., Eckfeldt J.H., Gravel R.A., and Rozen R. (2003). Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study. Atherosclerosis. 166, 49-55.
10. Chen J., Stampfer M.J., Ma J., Selhub J., Malinow M.R., Hennekens C.H., and Hunter D.J. (2001). Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis. 154, 667-672.
11. Hiroyuki Morita, Hiroki Kurihara, Takao Sugiyama, Chikuma Hamada, Yakiko Kurihara, Takayuki Shindo, Yoshio Oh-hashi, and Yoshio Yazaki (1999). Polymorphism of the methionine synthase gene association with homocysteine metabolism and late-onset vascular diseases in the Japanese population. Arterioscler Thromb Vasc Biol. 19, 198-202.
12. Doolin M.T., Barbaux S., McDonnell M., Hoess K., Whitehead A.S., and Mitchell L.E. (2002). Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet. 71, 1222-1226.
13. Zhao T., Zhu H.P., Li Y. (2000). Methionine synthase and neural tube defects. Journal of Hygiene Research. 29, 397-400.
Polymorphism of Methionine Synthase Gene in Nuclear Families of Congenital Heart Disease
ZHU Wen-li,CHEN Jun,DAO Jing-jing,et al.
Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
Objective To investigate the relations of methionine synthase (MS) gene variation with congenital heart disease (CHD) phenotype. Methods 193 CHD patients (94 male and 99 female) and their biological parents (nuclear families) in Liaoning province were selected as case group, and another 104 normal population (60 male and 44 female) and their parents without family history of birth defects as control group. For all subjects the polymorphism of MS gene A2756G locus was examined by PCR-RFLP method. Results In offspring of control group the frequencies of MS genotype (+/-) and allele (+) were 10.7% and 5.3%, without existence of homozygote. The MS genotype distribution and allele frequencies of CHD patients and their mothers were not significantly different with control (P > 0.05). The frequency of allele (+) in case fathers (5.0 %) was apparently lower than control (9.1%, P = 0.060), and the odds ratio (OR) was 0.53 (95% CI: 0.25-1.09). There was no difference in parents’ genotype combination between two groups and either no difference in genotype distribution among different types of CHD. The analysis of genetic transmission indicated that the mutation allele (+) existed transmission disequilibrium in CHD nuclear families. The percentage of allele (+) transmitted from parents was lower than allele (-) with OR 0.26 (95% CI: 0.11-0.60). Conclusion The study showed that the MS gene variation in parents was associated with occurrence of CHD in offspring, and the mutation allele (+) in parents might be related with the decrease of CHD risk in offspring.
Key words: Methionine synthase; Gene polymorphism; Congenital heart disease; Nuclear family