食欲调节激素与饮食诱导肥胖和肥胖抵抗的关系
王重建 杨年红 郝丽萍 聂绍发
(武汉华中科技大学同济医学院公共卫生学院,武汉,430030)
摘要:目的探讨食欲调节激素NPY、PYY336与高脂饮食诱导大鼠肥胖和肥胖抵抗的关系及肥胖易感性差异的机制。方法雌性SD大鼠36只,按体重随机分为高脂组(N=27)和对照组(CF,n=9),分别给予高脂饲料和基础饲料。第13周末,根据体重将高脂组分为饮食诱导肥胖(DIO,n=13)和肥胖抵抗(DIOR,n=9)大鼠,观察各组大鼠体重、热能摄入量及能量利用率的差异,RIA测定血浆NPY与PYY336含量,荧光实时定量PCR测定下丘脑NPY及回结肠PYY mRNA的表达水平。结果DIO大鼠体重、热能摄入量及能量利用率显著高于CF大鼠和DIOR大鼠(P<0.01),而DIOR大鼠与CF大鼠相比无显著性差异;DIO大鼠下丘脑NPY mRNA表达水平显著高于CF大鼠和DIOR大鼠(P<0.01),而DIOR大鼠与CF大鼠相比无显著性差异;DIOR大鼠血浆PYY336含量及回结肠PYY mRNA表达水平均显著高于CF大鼠和DIO大鼠(P<0.01),DIO大鼠与CF大鼠相比,除回肠PYY mRNA的表达水平升高,其余指标均无显著性差异(P>0.05)。讨论食欲调节激素NPY、PYY336表达和分泌水平的差异与高脂饮食条件下大鼠肥胖和肥胖抵抗的形成密切相关,其可能是导致大鼠发生肥胖易感性差异的机制之一。
关键词:神经肽Y;肽YY;高脂饮食;肥胖;肥胖抵抗
Relation between appetiteregulating hormones and obesity susceptibility in rats
Wang ChongjianYang NianhongHao LipingNie Shaofa
(School of Public Health, Tongji Medical college, Huazhong University of Science & Technology, Wuhan, 430030)
Abstract:ObjectiveTo explore the relation between NPY, PYY336 and obesity susceptibility in rats, and the corresponding mechanism.MethodsThirtysix female SD rats were randomly divided into highfat diet group (n=27) and control group (CF, n=9), and given either highfat diet or chow for 13w. Then the highfat diet group was subdivided into dietinduced obesity (DIO) and dietinduced obesity resistant (DIOR) rats according to the final body weight. Body weight, caloric intake, energy efficiency, the plasma concentration of NPY, PYY336, the expression levels of hypothalamic NPY and ileocolon PYY mRNA were measured and compared. ResultsBody weight, caloric intake, energy efficiency, and the expression of NPY mRNA of DIO rats were higher significantly than those of CF and DIOR rats, while no significant difference between DIOR and CF rats. The concentration of PYY336 and the expressions of PYY mRNA of ileocolon in DIOR rats were higher significantly than that of the DIO and CF rats (P<0.01), while no significant differenc was found between DIO and CF rats (P>0.05), except that PYY mRNA of ileum was advanced in DIO rats (P<0.01). ConclusionThe different of NPY, PYY336 levels could play an important role for the susceptibility on highfat diet induced obesity.
Keywords: Neuropeptide Y; Peptide YY; Highfat diet; Obesity; Obesity resistant
高脂饲料喂养的动物,表现为饮食诱导肥胖(Dietinduced Obesity, DIO)和肥胖抵抗(Dietinduced Obesity Resistant, DIOR)两种不同的表型[1,2],与高脂膳食下人群肥胖的发生机制非常相似。下丘脑是机体能量平衡的调节中枢,由下丘脑弓状核神经元分泌和释放的神经肽Y(Neuropeptide Y, NPY)是一种促食欲调节激素[3]。肽YY(Peptide Y, PYY)是由胃肠道L细胞合成和分泌的一种抑食欲调节激素[4,5],它在循环系统中主要以PYY336的形式存在[6,7]。本文通过观察高脂饮食诱导的肥胖和抵抗大鼠热能摄入量、能量利用率、血浆NPY和PYY336水平以及相应组织NPY、PYY基因表达水平的差异,探讨高脂膳食条件下大鼠发生肥胖及肥胖抵抗的机制,为有效预防人类肥胖的发生提供理论依据。
1 材料和方法
1.1 动物与饲料
雌性SD大鼠36只,购于上海西普尔-必凱实验动物有限公司(准SCXK沪2003-0002),体重150~160g。基础饲料购自华中科技大学同济医学院实验动物中心,热能含量3.29kcal/g(蛋白质供能占21.9%、脂肪供能占13.7%、碳水化物供能占64.4%);高脂饲料参照文献配制[2],热能含量4.62kcal/g(蛋白质供能占20.0%、脂肪供能占49.9%、碳水化物供能占30.1%)。
1.2 动物饲养与分组
购入大鼠适应性饲养1周后,按体重随机分为两组:正常对照组9只,喂以基础饲料(Chow food, CF);高脂组27只,喂以高脂饲料(Highfat, HF)。各组大鼠均单笼饲养,自由摄食、饮水,动物房温度(22±5)℃,相对湿度(50±10)%。于第13周末,参照CF大鼠平均体重及标准差,将高脂饲养组再分为DIO大鼠(体重大于CF大鼠平均体重加1.96倍标准差,n=13)和DIOR大鼠(体重小于CF大鼠平均体重加1倍标准差,n=9)。
1.3 相关指标和组织样本收集
实验期间每日观察大鼠一般情况,记录给食量和撒食量,计算摄食量,每周称体重。第13w末,过夜禁食10h后断头处死,收集全血,加入预冷的7.5%,含EDTA二钠(3ml全血加40μl)抗凝管中,加抑肽酶(1ml全血加500U),混匀,4℃离心15min(3000r/min)分离血浆,-20℃保存待测。迅速取出全脑,参照文献[8]和大鼠脑冠状面图谱对下丘脑进行定位并分离,置液氮冻存,以备RNA抽提。以盲肠定位,分离大鼠固定部位回肠和结肠,每段取1.0cm左右,用高压灭菌的DEPC水冲洗干净后,在高压灭菌的滤纸上吸干,迅速置液氮中冻存,以备RNA抽提。
1.4 血浆PYY336和NPY的测定
采用液相竞争放射免疫检测法测定血浆PYY336和NPY含量。PYY336放射免疫检测试剂盒购于美国PhoenixBiotech公司,NPY放射免疫检测试剂盒购自北京东雅生物技术研究所。
1.5 RNA提取及荧光实时定量PCR反应
按Trizol说明书提取下丘脑和回结肠组织总RNA,核酸蛋白测定仪测量RNA浓度,在25μl反应体系中,以2.5μg mRNA为模板逆转录为cDNA后进行荧光实时定量PCR扩增。自基因库检索目的基因和βactin cDNA序列,设计PCR引物[9],βactin(156bp)上游引物:5catcactatcggcaatgagc3,下游引物:5gacagcactgtgttggcata3;NPY(225bp)上游引物:5tccgctctgcgacactacatc3,下游引物:5aggcagactggtttcacagga3;PYY(215bp):上游引物:5cctaccccgctaaaccagag3,下游引物:5tcaccactggtccacaccttc3;SYBR Green PCR扩增程序:50℃ 2min(UDG孵育),95℃ 2min,95℃ 15s,60℃ 60s,40个循环。
用ΔΔCT法对荧光定量PCR结果进行定量分析。CT值为荧光信号有统计学意义显著增长时的循环次数,ΔCT值为目的基因CT值与管家基因(βactin)CT值的差值,ΔΔCT为各试验组ΔCT与选择的对照组ΔCT的差值。平均相对含量=2—平均ΔΔCT,为相对于CF大鼠mRNA的水平。
1.6 统计分析
全部数据用Microsoft Excel 2003录入,数据以x-±s 表示,采用 SPSS 12.0 软件进行统计分析。
2 结果
2.1 大鼠体重变化
实验开始时,三组大鼠体重无显著性差异,随着喂养时间的推移,各组大鼠体重之间的差异逐渐增加(如图1所示)。实验结束时,DIO 大鼠体重(343.35±17.56g)显著高于CF大鼠(282.06±20.60g)和DIOR 大鼠(290.78±16.63g)(P<0.01),而 DIOR 大鼠与CF大鼠相比未见显著性差异(P>0.05)。
Fig. 1Weekly body weights were measured in DIO, DIOR and CF rats.
2.2 大鼠热能摄入量和能量利用率的比较
由于基础饲料和高脂饲料的热能密度不同,故将食物摄入量换算为热能摄入量进行比较。喂养期间各组大鼠总的热能摄入量分别为:DIO(6363.58±471.16)kcal,DIOR(5496.76±327.07)kcal,CF(5631.29±370.78)kcal,DIO大鼠热能摄入量显著高于CF大鼠和DIOR大鼠(P<0.01),DIOR大鼠和CF大鼠相比无显著性差异(Fig. 2A)。喂养期间各组大鼠总的能量利用率[能量利用率=体重增量(g)/同期热能摄入量(kJ)×100%]分别为DIO(2.85±0.25)%,DIOR(2.36±0.30)%,对照组(2.14±0.34)%,DIO大鼠与CF大鼠和DIOR大鼠相比均有极显著性差异(均P<0.01),DIOR大鼠和CF大鼠相比,差异无显著性意义(Fig. 2B)。
Fig. 2Weekly caloric intake (A) and energy efficiency (B) were measured in DIO, DIOR and CF rats.
2.3 血浆PYY和NPY水平比较
各组大鼠血浆PYY336的水平分别为DIO(38.78±5.68)pg/ml,DIOR(53.03±9.64)pg/ml,CF(35.54±8.74)pg/ml,统计分析显示,DIOR大鼠血浆PYY336含量显著高于CF大鼠和DIO大鼠(P<0.01),DIO大鼠与CF大鼠相比差异无统计学意义(P>0.05)。各组大鼠血浆NPY 水平分别为DIO(8.67±0.67)pg/ml,DIOR(8.40±0.71)pg/ml,CF(8.15±1.14)pg/ml,统计分析无显著性差异(P>0.05)。
2.4 NPY与PYY mRNA 表达水平的比较
如图3A所示,DIO大鼠下丘脑 NPY mRNA的表达水平显著高于CF大鼠和 DIOR大鼠(P<0.01),而 DIOR 大鼠与CF大鼠相比差异无统计学意义(P>0.05)。如图B,C所示,DIOR大鼠回结肠PYY mRNA表达水平均显著高于DIO和CF大鼠(P<0.01),而DIO与CF大鼠相比,回肠PYY mRNA表达水平显著升高(P<0.01),结肠PYY mRNA表达水平无显著性(P>0.05)。
Fig. 3Hypothalamic NPY (A), ileum PYY (B), colon PYY (C) mRNA expression levels were measured by realtime PCR in DIO, DIOR and CF rats fed the highfat diet or chow diet.
3 讨论
下丘脑是机体的食欲调节中枢,通过复杂的"食欲调节网络"接受和传递各种食欲调节因子(包括促食欲激素和抑食欲激素)的信号,对食欲进行综合的调节[4,10]。作为"食欲调节网络"中重要的食欲调节激素,NPY和PYY336对机体能量摄入、贮存、消耗及能量平衡起着重要的调节作用[11,12]。实验结果显示,同种系、同性别大鼠对高脂饲料诱导肥胖的易感性存在较大的个体差异,表现为饮食诱导肥胖和肥胖抵抗两种不同的表型,自由摄食饮水的条件下,热能摄入高者发展为肥胖,热能摄入接近CF大鼠者不肥胖,提示DIOR大鼠暴露于高脂饲料时可通过减少进食量而调节能量摄入水平,而DIO大鼠由于缺乏这一自我调节能力,从而导致能量摄入过多并发生肥胖。
进一步研究发现,DIOR大鼠血浆中抑食欲激素PYY336含量及回结肠PYY mRNA的表达水平较DIO大鼠均显著升高,促食欲激素NPY mRNA 表达水平较DIO大鼠显著下降,提示DIOR大鼠体内抑制食欲激素水平的升高、促食欲激素水平的下降抑制了热能的摄入,从而诱导肥胖抵抗的发生;与此相反的是,DIO大鼠体内抑食欲激素水平仅维持在基础对照组水平,促食欲激素水平的升高促进了热能的摄入,从而诱导肥胖的发生。总之,食欲调节激素NPY、PYY在饮食诱导肥胖易感性的差异中可能扮演了重要的角色,NPY、PYY表达和分泌水平的差异与高脂饮食条件下大鼠肥胖和肥胖抵抗的形成密切相关,但是高脂膳食条件下食欲调节激素NPY及PYY表达和分泌差异的机制还有待深入研究。
参考文献
[1] OxcaiLB. Effect of dietary sugar and of dietary fat on food intake and body fat content in rats [J]. Growth, 1987, 51:64-72.
[2] 王重建,杨年红,许明佳,等. 高脂饮食诱导大鼠肥胖易感性差异的研究[J].华中科技大学学报(医学版), 2005, 34(1):65-68.
[3] MorrisMJ, PaviaJM, Increased endogenous noradrenaline and neuropeptide Y release for the hypothalamus of streptozotocin diabetic rats [J]. Brain Res, 2004, 2006(1):100-106.
[4] Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY336 physiologically inhibits food intake[J]. Nature, 2002, 418:650-654.
[5] Hyland NP, Pittman QJ, Sharkey KA. Peptide YY containing enteroendocrine cells and peripheral tissue sensitivity to PYY and PYY(336) are maintained in dietinduced obese and dietresistant rats. Peptides, 2007, 28:1185-1190.
[6] Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(336) and PYY(136). Peptides, 1989, 10: 797-803.
[7] Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 136 and PYY 336. Regul Pept, 1994, 51:151-159.
[8] Xue CY, Kageyama H, Kashiba M, et al. Different origin of hypertriglyceridemia induced by a highfat and a highsucrose diet in ventromedial hypothalamiclesioned obese and normal rats[J]. Int J Obes, 2001, 25:434-438.
[9] Laurent F, Jean PS, Christian B, et al. Functional mapping of NPY/PYY Receptors in rat and human gastrointestinal tract. Peptides, 2002, 23:1765-1771.
[10] Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus[J]. Nature, 2001, 411:480-484.
[11] Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY336. N Engl J Med, 2003, 349(10):941-948.
[12] Billington CJ,Briggs JE,Harker S,et al. Neuropeptide Y in hypothalamic paraventricular nucleus:a center coordinating energy metabolism[J]. Am J Physiol, 1995, 266:1765-1770.