达能营养中心第九届学术研讨会论文集

耿越 涂文利 张健 张静静 张晾
(山东师范大学生命科学学院,济南,250014)

摘要目的使用超临界二氧化碳萃取技术萃取油菜花粉中的脂质,研究萃取物对高脂血大鼠的降血脂效果。 方法建立大鼠高脂血模型,大鼠随机分为基础饲料对照组、高脂饲料对照组、阳性药物对照组、低剂量萃取物组、中剂量萃取物组、高剂量萃取物组。药物和花粉萃取物灌胃,四周后处死大鼠,检测血清和肝脏指标。 结果:油菜花粉超临界二氧化碳萃取物是以α亚麻酸为主的不饱和脂肪酸油脂。与高脂对照组相比,不同含量的花粉萃取物可以不同程度的降低高脂血大鼠血清中TG和TC水平;降低肝脏中TC水平,明显升高肝脏HDLC和apoAI水平,三个剂量组对大鼠肝脏LDLC和apoB降低效果不同,显著降低大鼠肝脏中游离胆固醇水平(P<005);花粉萃取物组能升高大鼠血清LCAT水平,抑制HMGCoA还原酶活性;花粉萃取物肝脏脂肪酸中DHA含量明显高于高脂对照组。 结论:油菜花粉对高血脂大鼠血脂的降低作用,主要是通过增加HDLC和LCAT水平,促进胆固醇转运、代谢和排出,抑制HMGCoA还原酶活性减少胆固醇体内合成,并提高肝脏中DHA含量起作用。
关键词:超临界二氧化碳萃取;α亚麻酸;血清脂质;油菜花粉


Effect of extract by supercritical CO2extraction from rape pollen
on lipid metabolism in experimental hyperlipidemic ratsGeng Yue, TU Wenli, Zhang Jingjing, Zhang Liang, Zhang Jian, Tian Bo
(College of Life Science, Shandong Normal University, Jinan 250014, China )

Abstract:ObjectiveThis study aimed to evaluate the effect of extract by supercritical carbon dioxide extraction from rape pollen on lipid metabolism in experimental hyperlipidemic rats. MethodsThe experimental hyperlipidemic rats were establish by high cholesterol diets. The rats were randomized into six groups including normal control group, high fat control group, medicinal control group, lopollens extraction group, midpollens extraction group, and hipollens extraction group . After four weeks of intraperitoneal injection, the rats were executed, and lipids levels of serum and hepatic tissue were detected. Result: The plasma levels of total cholesterol (TC) and triacylglycerol (TG) were significantly lower in the pollens extraction group and medicinal control group than in the high fat group. Hepatic TG and TC levels were decreased in rats fed pollens extraction and medicinal diets compared with high fat diets. A higher concentration of HDLC and apoAI in hepatic tissue was detected after the pollens extraction diet compared to the high fat diet (P<0.05), whereas reducing of the hepatic LDLC and apoB concentration shows different effects among the pollens extract diets. LCAT in serum of pollen extraction was significant high than HFC, also HMGCoA reductase show decrease tendency in experimental group of pollen extraction. We can drew conclution from valuable data of fatty acid composition that DHA of hepatic lipid was high in pollen extraction group than HFC group.ConclusionThese results suggest that extract from rape pollen rich in alphalinolenic acid seem to decrease the degree of lipid in plasma and hepatic tissue compared to high fats. diet. This is possibly due to increasing activity of LCAT and decreasing activity of HMGCoA reducase and the ratio of clearance of free cholesterol so as to promote transportation, excretion and metabolism of cholesterol in hepatic tissue and serum, also indirectly increase in DHA of heptatic tissue.
Keywords: supercritical Carbon Dioxide extraction; alphalinolenic acid; serum lipids; rape pollen

高脂血症是动脉粥样硬化的首要危险因素,是与饮食相关的疾病,预防高脂血症是治疗心脑血管疾病的重要环节。大量研究表明n3系列不饱和脂肪酸如:EPA、DHA具有降血脂,减少心血管疾病作用,α亚麻酸是n3不饱和脂肪酸的前体,试验表明对心血管疾病具有预防作用[1],与冠心病及动脉粥样硬化呈负相关性[2]。Frank等历时十年的跟踪调查研究表明,高摄入富含α亚麻酸的饮食可以预防致命性缺血心脏疾病[3]。法国学者的研究认为地中海克里特岛的居民膳食结构中高含α亚麻酸,与西方其他地区相比心血管疾病显著降低[4]。
我国花粉资源丰富,居世界首位,花粉中多不饱和脂肪酸含量高,尤其在玉米和油菜花粉中含有高水平的α亚麻酸,饱和脂肪酸与不饱和脂肪酸比例合理[5],具有很高的开发利用价值和可观的经济前景。本实验采用环保、萃取速率快、效率高、耗能少、无残留的超临界二氧化碳萃取技术,萃取油菜花粉中的脂质,研究萃取物对高脂血大鼠降血脂的作用效果,初步揭示其作用机理,为开发调节血脂花粉天然产品提供理论依据。
1 材料与方法
11 油菜花粉超临界CO2萃取物
油菜(Brassica campestris L)花粉由杭州华黎泵业有限公司进行超临界二氧化碳萃取加工,萃取工艺条件为:萃取温度55℃,压力30MPa,萃取时间 2小时;分离釜Ⅰ压力为14MPa,温度45℃;分离釜Ⅱ压力为 6MPa,温度40℃。
脂肪酸组成采用Finnigan Trace GC Ultra/Trace DSQ GC/MS分析。
12 实验性高脂血症大鼠模型建立及处理方法
按文献报道[6]建立高脂血症大鼠模型。雄性Wistar大鼠60只,体重140±20g,由山东省中医药大学提供。经基础饲料喂养一周后,随机分成6组,每组10只,分别为基础饲料对照组(Normal control, NC),高脂饲料对照组(High fat control, HFC),阳性药物洛伐他汀对照组(Medicinal control, MC),低剂量萃取物组(Low pollen’s extraction,LPE),中剂量萃取物组(Mid pollen’s extraction, MPE),高剂量萃取物组(Hi pollen’s extraction, HPE)。大鼠高脂饲料配方为:2%胆固醇,10%猪油,02%甲基硫氧嘧啶,878%基础饲料。基础组喂基础饲料,其他组喂高脂饲料,洛伐他汀(Lovastatin)由昆明四创药业有限公司生产,批号:国药准字H10980011,用药量为10mg/kg·d,油菜花粉萃取物低、中、高剂量组用量分别为04mg/kg·d,10mg/kg·d,20mg/kg·d,灌胃。动物自由饮水,每周称重记录。大鼠连续给药喂养4周,禁食12小时后乙醚麻醉,由腹主动脉取血,EDTA抗凝,测定血脂指标。取肝脏称重并测脂质相关组分。
13 测定指标与方法
131 血脂指标测定: TC采用CHODPAP法、TG采用GPOPAP法、HDLC、LDLC采用酶法,试剂盒购自北京中生北控生物科技股份有限公司。apoAⅠ、apoB采用免疫比浊法,试剂盒购自上海荣盛生物技术有限公司。
132 肝脏脂质测定:以生理盐水制备10%肝脏匀浆,离心后取上清液测定TC、HDLC、LDLC、apoB、apoAⅠ,测试方法同131。
133 血清LCAT与肝脏FC测定:血清LCAT采用蒋宪成的方法[7],LCAT活性以每小时胆固醇酯化量μmol/L血清表示,游离胆固醇采用日本协和体外诊断试剂盒测定。
134 HMGCoA还原酶活性测定:参见文献[8]。酶活力单位(U)定义为1L溶液中每分钟消耗1微摩尔的HMGCoA[μmol/(L·h)]所需的酶量。
135 肝脏脂肪酸组成测定脂质提取方法参见文献[9],脂肪酸分析方法参见11。
14 统计分析
采用SPSS100统计软件进行方差分析
Seperator
2 结果
21 油菜花粉超临界CO2萃取物GC/MS
分析(表1)分离釜Ⅰ萃取物以富含α亚麻酸的不饱和脂肪酸为主,相对含量高达7125%;分离釜Ⅱ以饱和烷烃为主,其中二十烷烃占4670%,而α亚麻酸仅占1404%。实验采用分离釜Ⅰ中的油菜花粉萃取物。
22 对大鼠生长发育的影响(表2)
实验过程中大鼠进食正常,各组大鼠体重增加无显著差异,喂高脂饲料的各实验组之间肝脏重量/体重值没有明显差异。说明花粉超临界二氧化碳萃取物对大鼠增重及肝脏无异常影响。



23 对大鼠血脂水平的影响(表3)
与高脂对照组相比,洛伐他汀药物组能明显降低TG、TC水平;油菜花粉超临界二氧化碳萃取物三个剂量组能够明显降低高脂血大鼠血清中TG含量,作用效果与洛伐他汀药物组接近;低剂量和中剂量组对高脂血大鼠血清TC的降低作用显著,明显低于高脂对照组,低剂量组作用效果更好;与高脂对照组相比,三个剂量组对血清HDLC有升高作用,低剂量组明显升高血清中HDLC水平;低、中剂量组能降低高脂血大鼠血清LDLC含量,效果优于或接近药物组,但差异不显著,而高剂量组含量有所升高;药物组与油菜花粉萃取物组对apoAⅠ作用不明显,而对apoB有升高的趋势,其中高剂量组升高作用明显。



24 对大鼠肝脏脂质水平的影响(表4)
与高脂对照组相比,药物组对肝脏脂质中TC、LDLC、apoB降低作用明显,显著升高apoAⅠ水平。油菜花粉超萃取物的三个剂量组能够显著降低高脂血大鼠肝脏中TC含量,而各剂量组之间没有差异,作用效果低于药物组;低剂量和高剂量花粉萃取物组能明显降低LDLC水平;低剂量和中剂量花粉萃取物组对肝脏apoB的降低作用明显;三个剂量组花粉萃取物明显增加肝脏中apoAⅠ和HDLC水平,低剂量组对HDLC的升高作用显著高于中、高剂量组,中剂量组对apoAⅠ的升高作用明显高于其他两个剂量组;与高脂对照组相比,低剂量花粉萃取物组与药物组大鼠显著降低肝脏中游离胆固醇水平,说明油菜花粉超萃取物加快了肝脏中胆固醇酯化速率。由图1可以看出花粉萃取物组及洛伐他汀组血清及肝脏中的动脉粥样硬化指数明显低于高脂对照组。



25 大鼠血清LCAT活性及肝脏HMGCoA
还原酶活性的变化(图1)药物组和低、中剂量花粉萃取物组能显著升高大鼠血清LCAT水平;与高脂对照组相比,药物组及各花粉萃取物组明显降低肝脏中HMGCoA还原酶活性。
26 大鼠肝脏脂肪酸组成
与基础组相比,由于高脂饲料中含有较高的油酸,喂养高脂饲料各组油酸含量明显增加,而DHA与花生四烯酸含量明显低于基础组;喂养高脂饲料的高脂对照组和试验组相比主要的饱和脂肪酸软脂酸和硬脂酸,单不饱和脂肪酸及油酸相对含量没有明显差异,SFA/PUFA差异不明显;花粉萃取物组和药物组中油酸含量低于高脂对照组,但差异不显著;与高脂对照组相比,药物组和花粉萃取物三个剂量组DHA含量明显升高。

Figure 1 Atherosclerosis Index of serumand liver in experimental mice


Figure 2Effect of Pollen extraction on LCAT and HMGCoA Reductase of mice


3 讨论
本实验结果表明:油菜花粉超临界二氧化碳萃取物以α亚麻酸为主。与高脂对照组相比,不同含量的花粉萃取物可以不同程度的降低高脂血大鼠血清中TG和TC水平;降低肝脏中TC水平,明显升高肝脏HDLC和apoAI水平,提高血清中 LCAT酶活性,抑制HMGCoA还原酶活性,提高肝脏中DHA水平。
许多研究证实富含α亚麻酸的油脂如苏籽油、亚麻油和富含n3系列多不饱和脂肪酸的鱼油都具有降低高血脂的作用[1013],其可能的作用机理是膳食中n3PUFA降低TG合成有关酶的活性[1415],抑制脂肪酸合成酶、G6P脱氢酶等与脂质合成有关的酶的活性[13],从而降低血脂中TG水平。本实验采用分离釜Ⅰ所得的萃取物,其中α亚麻酸的含量占脂肪酸组成的7125%,远高于苏籽油的含量445%[11],推测油菜花粉超临界二氧化碳萃取物降低TG水平的作用机理也与抑制与脂质合成相关的酶活性有关。
油菜花粉超临界二氧化碳萃取物具有明显的升高血清和肝脏中的HDLC和降低肝脏LDLC的作用,但对血清中的LDLC降低效果不明显,高剂量组甚至略有升高。实验研究表明富含α亚麻酸的苏籽油及亚麻油具有降低胆固醇作用[10-12,16],但对血清LDLC代谢没有明显影响[17-20] ,对脂蛋白没有明显作用[20]。以α亚麻酸为主的花粉萃取物降低高脂血大鼠胆固醇时,对血清LDLC和apoB没有降低的作用,在高剂量组反而有所升高。不饱和脂肪酸是构成脂蛋白的成份之一,不饱和脂肪酸的改变影响脂蛋白颗粒物理组成和化学结构。多不饱和脂肪酸降低LDL中胆固醇酯的熔点,而apoB构象变化不明显[17,21],或者载脂蛋白亚单位重新分布[22];Sorensen等研究表明多不饱和脂肪酸增大LDL颗粒体积,减小LDL颗粒密度,由于LDL颗粒增大减小了氧化危害性,从而降低了动脉粥样硬化的危险性[1819]。n3多不饱和脂肪酸对胆固醇的作用还表现在增强受体依赖的LDL摄取能力,肝脏LDL受体活性增加,受体与LDL亲和力增大,LDL清除速率加快[23],与本实验观察到肝脏中LDLC降低,游离胆固醇减少相符。
LCAT催化血浆中卵磷脂的酰基转移至胆固醇,生成胆固醇酯,在胆固醇逆转运与清除过程中起重要作用。本实验结果表明花粉萃取物对LCAT都有升高作用,其中以中剂量组最为明显,说明花粉萃取物有效的促进了胆固醇从血浆中的转运;在肝脏中游离胆固醇明显减少,表明大鼠摄食花粉萃取物后,胆固醇经HDLC从外周组织转运入肝脏,酯化效率增加,清除效率提高;多不饱和脂肪酸能够增加HDL中胆固醇酯和溶血磷脂含量,HDL颗粒结构发生变化,流动性更好,结构更致密,在胆固醇逆转运过程中起到良好的载体作用[24]。本实验证明花粉萃取物组可以降低HMGCoA还原酶活性,降低胆固醇的生成,与Du C等的试验结果一致[11]。
在基因水平上脂肪酸作为调控基因表达的信号,与胆固醇在代谢中有密切联系。研究表明,PUFAs抑制肝脏中SREBP1,从而对有关基因起负调控作用,这些基因包括,LDLR、HMGCoA合成酶和还原酶、乙酰CoA羧化酶、脂肪酸合成酶以及硬脂酸CoA去饱和酶。脂肪酸可以单独起作用,也可以和胆固醇协同作用;MUPAS和PUFAs通过改变SREBP成熟,以剂量依赖型下调SRE表达,并与脂肪酸饱和度有关,增加不饱和度,抑制作用越强[25],PUFAs还与核受体包括肝脏核因子4α(hepatic nuclear factor HNF4α)、肝脏X受体α,β(liver X receptors LXRs)、过氧化物酶体增殖物激活受体(peroxisome proliferatorsactivated receptors PPARs),或转录因子NFκB等作用以多种机制在分子水平上调节相关酶的基因转录[2629]。因此油菜花粉对血脂脂质的降低作用,可能是通过增加HDLC和LCAT水平,促进胆固醇转运、代谢和排出,抑制HMGCoA还原酶活性,减少胆固醇体内合成起作用,并在基因水平上通过与肝脏核因子4α、肝脏X受体α,β、过氧化物酶体增殖物激活受体等核受体直接作用,或与转录因子固醇调节元件结合蛋白1,2间接作用,以多种机制在分子水平上调节相关酶的基因转录[30],调控血脂在体内的生物代谢平衡。
本项研究中不同浓度的α亚麻酸对高脂血大鼠血脂的降低作用没有表现为随剂量增加而作用增强。说明α亚麻酸对血脂的调节作用机理复杂多样。目前还没有强有力的证据证明α亚麻酸对心血管疾病有直接作用[31],一般认为α亚麻酸在体内通过去饱和和延长作用转化为EPA和DHA[10], ALA在体内受△6去饱和酶的限制[3234]生成EPA和DHA含量有限,但有实验结果证明ALA在肝脏中生成DHA[13,35],ALA与DHA在组织内生物合成累计量相似[36],对高脂血症的降低作用与肝脏微粒体中EPA与DHA的增加有关[10,13,17],这与本实验观察到花粉萃取物组DHA含量比高脂对照组明显增加的结果一致。α亚麻酸与亚油酸的比例影响长链n3脂肪酸的生成效率[31,3637],不同剂量花粉萃取作用效果没有明显差异反映了α亚麻酸作用受到其他因素的影响。
α亚麻酸是人体必需脂肪酸,被认为是深海鱼油的换代产品。油菜花粉超临界二氧化碳萃取物以α亚麻酸为主,还有包括抗氧化剂在内的其他成分,因此对高脂血大鼠血清和肝脏中TG和TC水平的降低作用,是以α亚麻酸为主的多种天然成分的共同作用结果,许多长期营养膳食调查结果也证实膳食来源的ALA更加有益于预防心血管疾病的发生[1-4];一些研究使用合成的α-亚麻酸纯制剂,结果表明ALA对高血脂及动脉粥样硬化等心血管疾病作用不明显[17,19,38],这与实验使用的制剂来源,实验动物种类都有关系。所以在推荐使用时还应该进行更多的基础和临床试验研究以保证其安全效用。
参考文献
[1] Gillian CL, Gillian ST, Amanda JL, et al Essential fatty acids and cardiovascular disease: the Edinburgh Artery Study Vascular Medicine 1999; 4:219-226
[2] Djousse L, Pankow JS,  Eckfeldt, et al Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study Am J Clin Nutr2001; 74(5):612-619
[3] Frank B, Meir J, Joann E et al Dietary intake of αlinolenic acid and risk of fatal ischemic heart disease among women Am J Clin Nutr. 1999; 69:890-897.
[4] de Lorgeril, Salen P, Korup E, Aaroe J et al. Mediterranean alphalinolenic acidrich diet in secondary prevention of coronary heart disease. Lancet. 1994; 43:1454-1459.
[5] 涂文利,耿越,张静静等.八种蜜源花粉中脂肪酸组分分析.营养学报 (已录用)
[6] 苗明三.实验动物和动物实验技术.中国中医药出版社,北京,1997.6
[7] 蒋宪成,庄庆祺,梅美珍. 卵磷脂胆固醇酰基转移酶活性的简易测定法.上海第一医学院学报,1985,12(2):155.
[8] A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 ;226(1):497-509.
[9] LI Peng,ChenLan ying. Xuezhikang inhibits the activity of HMGCoA reductasse in pig liver. Basic Medical Sciences and Clinics.2003;23:531-534.
[10] Kim HK.Dietary alphalinolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane.Lipids.2001;36:1331-1336.
[11] Du C, Akira Sato, Shiro W, et al. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by longterm feeding of n3 fatty acidenriched oils compared with lard and n6 fatty acidenriched oils. Biol Pharm Bull.2003; 26:766-770.
[12] Sakai K, Shimokawa T, Kobayashi T et al. Lipid lowering effects of high linoleate and high alphalinolenate diets in rats and mice. Consequence of longterm feedings. Chem Pharm Bull (Tokyo). 1992; 40:2129-2132.
[13] Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthase by feeding alphalinolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem. 2004 ;15(8):485-92.
[14] Ide T, Kobayashi, H, Ashakumary L. Comparative effects of perrila and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim.Biophys.Acta. 2000;1485:23-35.
[15] Kabri,Y Ide,T. Activity of hepatic fatty acid oxidation in rats fad alphalinolenic acid. Biochim Biophys Acta. 1996;1304:105-119.
[16] Leisa R,Rachel S Katherine M et al. Cholesterol lowing benefits of soy and linseed enriched foods. Asia Pacific J Clin Nutr.2001;10:204-211.
[17] Nenseter MS, Rustan AC, LundKatz S et al. Effect of dietary supplementation with n3 polyunsaturated fatty acids on physical properties and metabolism of low density lipoprotein in humans. Arterioscler Thromb.1992;12(3):369-79.
[18] Sorensen NS, Marckmann P, ClarlErik H et al. Effect of fishoilenriched margarine on plasma lipids, lowdensitylipoprotein particle composition, size, and susceptibility to oxidation. Am J Clin Nutr 1998;68:235-241
[19] Suzukawa M, Abbey M, Peter R et al .Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages. Journal of Lipid Research. 1995,36:473-484
[20] Finnegan Y E, Minihane A M, Elizabeth C et al. Plant and marinederived n3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr.2003;77:783-794.
[21] Drevon CA, Nenseter MS, Brude IR,Omega3 fatty acidsnutritional aspects. Can J Cardiol,1995,Oct;11 Suppl G:47G-54G.
[22] Almario RU, Vonghavaravat V, Rodney W et al. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am J Clin Nutr 2001; 74:72-79
[23]David K. Regulatory effects of individual n6 and n3 polyunsaturated fatty acids on LDL transport in the rat. Journal of Lipid Research. 1993; 34:1337-1346.
[24] Rosseneu M, Declercq B, Vandamme D et al. Influence of oral polyunsaturated and saturated phospholipid treatment on the lipid composition and fatty acid profile of chimpanzee lipoproteins. Atherosclerosis, 1979, 32(2):141-53.
[25] Gottlicher M, Widmark E, Li Q, et al. Fatty acids activate a chimera of the clofibric acidactivated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992; 4653-4657
[26] Richard J, Rebecca A, Johnson et al. Unsaturated fatty acids inhibit sterol regulatory elementdepend gene expression: a potential mechanism contributing to hypertriglyceridemia in fatrestricted diets. Exp Boil Med, 2000; 184:1998
[27] Harini S, James M. Polyunsaturated Fatty acid regulation of gene expression. Nutrition Reviews, 2004; 62:333
[28] The role of liver X receptorαin the fatty acid regulation of hepatic gene expression. J Biological Chemistry.2003:278:40736-40743.
[29] Hayhurst GP, Lee YH, Lambert G, et al. Hepatocyte nuclear factor4 alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol .2001; 21:1393
[30] Junmp, DB. Fatty acid regulation of gene transcription.  Critical Reviews in Clinical Laboratory Sciences 2004;41:41-78.
[31] Artemis P S. Essential fatty acids in health and chronic disease. Am J Clin Nutr, 1999, 70:560s569s.
[32] Michael J, Virginia M, Leslie G etal. Metabolism of stearidonic acid in human subjects: comparision with the metabolism of other n3 fatty acids. Am J Clin Nutr 2003; 77:1140-1150
[33] Zhong F, Andrew J. Novel pathway of metaboilsm of alphalinolenic acid in the Guinea pig. Pediatric Research.2000.47:414-417
[34] Robert J, Joseph R, Janet A at el. Physiological compartmental analysis of alphalinolenic acid metabolism in adult humans. Journal of lipid research.2001,42:1257-1264.
[35] Rebecca C, Sheaff, HuiMin Su etal. Convension of αlinolenate to docosahexaenoate is not depressed by high dietary levels of linoleate in young rats: tracer evidence using high precision mass spectrometry. Journal of Lipid Research, 1995:36:998-1008.
[36] Alfonso V, Rommy VB, Viviana A et al.  Supplementation of female rats with αlinolenic acid or docosahexaenoic acid leads to the same omega6/omega3 LCPUFA accretion in mother tissue and in fetal and newborn brains. Ann Nutr Metab.2004; 48:28-35.
[37] Emken EA, Adlot RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuteriumlabeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994, 1213:277-288.
[38] Claudia M, Marga C,Edith JM et al. αlinolenic acid intake is not beneficially associated with 10yrisk of coronary artery disease incidence:the Zutphen Elderly Study. Am J Clin Nutr.2001; 74:457-463.